#include #include #include #include #include #include #include #include #include #include #include // get the flag of a lin addr in page table static inline u32 get_flag(uintptr_t laddr, u32 cr3) { assert(PGOFF(laddr) == 0); uintptr_t *pde_ptr = (uintptr_t *)K_PHY2LIN(cr3); assert((pde_ptr[PDX(laddr)] & PTE_P) != 0); phyaddr_t pte_phy = PTE_ADDR(pde_ptr[PDX(laddr)]); uintptr_t *pte_ptr = (uintptr_t *)K_PHY2LIN(pte_phy); assert((pte_ptr[PTX(laddr)] & PTE_P) != 0); return PTE_FLAG(pte_ptr[PTX(laddr)]); } static phyaddr_t alloc_phy_page(struct page_node **page_list) { phyaddr_t paddr = phy_malloc_4k(); struct page_node *new_node = kmalloc(sizeof(struct page_node)); new_node->nxt = *page_list; new_node->paddr = paddr; new_node->laddr = -1; *page_list = new_node; return paddr; } static phyaddr_t lin_mapping_phy(u32 cr3, struct page_node **page_list, uintptr_t laddr, u32 pte_flag) { assert(PGOFF(laddr) == 0); uintptr_t *pde_ptr = (uintptr_t *)K_PHY2LIN(cr3); if ((pde_ptr[PDX(laddr)] & PTE_P) == 0) { phyaddr_t pte_phy = alloc_phy_page(page_list); memset((void *)K_PHY2LIN(pte_phy), 0, PGSIZE); pde_ptr[PDX(laddr)] = pte_phy | PTE_P | PTE_W | PTE_U; } phyaddr_t pte_phy = PTE_ADDR(pde_ptr[PDX(laddr)]); uintptr_t *pte_ptr = (uintptr_t *)K_PHY2LIN(pte_phy); phyaddr_t page_phy; if ((pte_ptr[PTX(laddr)] & PTE_P) != 0) warn("fork alloc: this page was mapped before, laddr: %x", laddr); page_phy = alloc_phy_page(page_list); (*page_list)->laddr = laddr; pte_ptr[PTX(laddr)] = page_phy | pte_flag; return page_phy; } // modified from pmap.c::map_elf // first alloc a new page list, together with a new cr3(with page directory page) // second map kern // third iterate over parent pages, // for each parent page(except page table pages, child has its own) , map a page in child proc // then copy content of this page to child // finally, set child->page_list to this brand new one and set cr3 // SET: child's page list and cr3 static inline void copy_parent_pages(PROCESS_0 *child, PROCESS_0 *parent){ phyaddr_t new_cr3 = phy_malloc_4k(); memset((void *)K_PHY2LIN(new_cr3), 0, PGSIZE); struct page_node *new_page_list = kmalloc(sizeof(struct page_node)); new_page_list->nxt = NULL; new_page_list->paddr = new_cr3; new_page_list->laddr = -1; // maybe redundant, let it be for now map_kern(new_cr3, &new_page_list); // iterate over parent pages for (struct page_node* pa_page = parent->page_list; pa_page != NULL; pa_page = pa_page->nxt) { // no need to take care of non-physical page, we have our own page table and cr3 if (pa_page->laddr == -1) continue; // first alloc a new page for the same laddr, and set flag same as parent phyaddr_t new_paddr = lin_mapping_phy(new_cr3, &new_page_list, pa_page->laddr, get_flag(pa_page->laddr, parent->cr3)); // copy parent page to child page using paddr memcpy((void*)K_PHY2LIN(new_paddr), (const void*)K_PHY2LIN(pa_page->paddr), PGSIZE); // kprintf("%x -> %x\n", K_PHY2LIN(pa_page->paddr), K_PHY2LIN(new_paddr)); } child->page_list = new_page_list; child->cr3 = new_cr3; } ssize_t kern_fork(PROCESS_0 *p_fa) { // 这可能是你第一次实现一个比较完整的功能,你可能会比较畏惧 // 但是放心,别怕,先别想自己要实现一个这么大的东西而毫无思路 // 这样你在焦虑的同时也在浪费时间,就跟你在实验五中被页表折磨一样 // 人在触碰到未知的时候总是害怕的,这是天性,所以请你先冷静下来 // fork系统调用会一步步引导你写出来,不会让你本科造火箭的 // panic("Unimplement! CALM DOWN!"); // 推荐是边写边想,而不是想一车然后写,这样非常容易计划赶不上变化 //? before all, lock father while (xchg(&p_fa->lock, 1) == 1) schedule(); // fork的第一步你需要找一个空闲(IDLE)的进程作为你要fork的子进程 PROCESS *proc_child = NULL; int i = 0; //? maybe cli will be better when preserving a proc resource DISABLE_INT(); for (i = 1; i < PCB_SIZE; ++ i) { if (proc_table[i].pcb.statu == IDLE) { proc_table[i].pcb.statu = INITING; proc_child = &proc_table[i]; break; } } ENABLE_INT(); if (proc_child == NULL) { // NO hell. no free proc_table found. xchg(&p_fa->lock, 0); return -EAGAIN; } assert(proc_child->pcb.lock == 0); while (xchg(&proc_child->pcb.lock, 1) == 1) schedule(); PROCESS_0 *p_child = &proc_child->pcb; // 再之后你需要做的是好好阅读一下pcb的数据结构,搞明白结构体中每个成员的语义 // 别光扫一遍,要搞明白这个成员到底在哪里被用到了,具体是怎么用的 // 可能exec和exit系统调用的代码能够帮助你对pcb的理解,不先理解好pcb你fork是无从下手的 // panic("Unimplement! read pcb"); // 在阅读完pcb之后终于可以开始fork工作了 // 本质上相当于将父进程的pcb内容复制到子进程pcb中 // 但是你需要想清楚,哪些应该复制到子进程,哪些不应该复制,哪些应该子进程自己初始化 // 其中有三个难点 // 1. 子进程"fork"的返回值怎么处理?(需要你对系统调用整个过程都掌握比较清楚,如果非常清晰这个问题不会很大) // 2. 子进程内存如何复制?(别傻乎乎地复制父进程的cr3,本质上相当于与父进程共享同一块内存, // 而共享内存肯定不符合fork的语义,这样一个进程写内存某块地方会影响到另一个进程,这个东西需要你自己思考如何复制父进程的内存) // 3. 在fork结束后,肯定会调度到子进程,那么你怎么保证子进程能够正常进入用户态? // (你肯定会觉得这个问题问的莫名其妙的,只能说你如果遇到那一块问题了就会体会到这个问题的重要性, // 这需要你对调度整个过程都掌握比较清楚) //? Start to COPY //? 1. COPY PCB // p_fa shares the same base addr as its padding // anyways, copy the whole proc_table item(8K?) DISABLE_INT(); // make sure this process is never interrupted // memset(proc_child, 0, sizeof(PROCESS)); // clear child's kernel stack //? seem to be useless // the commented fields below will be set later // p_child->cr3 p_child->exit_code = p_fa->exit_code; // p_child->fork_tree // p_child->kern_regs // p_child->lock // p_child->page_list p_child->pid = i; p_child->priority = p_fa->priority; p_child->statu = INITING; //! important!!! if you copied this from parent, haha, waste one hour p_child->ticks = p_fa->ticks; p_child->user_regs = p_fa->user_regs; ENABLE_INT(); // TODO: may be a useless atomic block, try to remove and test again //? 2. ALLOC PAGES AND COPY PHYSICAL MEMORY copy_parent_pages(p_child, p_fa); // panic("Unimplement! soul torture1"); //? 3. SET restart point // //! maybe, kern stack different, use offset relevant to stack base addr to set child's kern esp // u32 esp_off = p_fa->kern_regs.esp - (u32)p_fa; // p_child->kern_regs.esp = (u32)p_child + esp_off; // u32 ebp_off = p_fa->kern_regs.ebp - (u32)p_fa; // p_child->kern_regs.ebp = (u32)p_child + ebp_off; // kprintf("%x %x\n", p_child->kern_regs.esp, p_fa->kern_regs.esp); // kprintf("%x %x\n", p_child->user_regs.kernel_esp, p_fa->user_regs.kernel_esp); //! kern_ctx is not part of our FSM model of user process, never copy it from parent //! or 1 another hour will be wasted // just set it as a new process from scratch, directly jump to restart p_child->kern_regs.esp = (u32)(proc_child + 1) - 8; *(u32 *)(p_child->kern_regs.esp + 0) = (u32)restart; *(u32 *)(p_child->kern_regs.esp + 4) = (u32)p_child; p_child->user_regs.eax = 0; // eax as the retval // 别忘了维护进程树,将这对父子进程关系添加进去 // ? maintain process tree p_child->fork_tree.p_fa = p_fa; // malloc a son_node struct son_node* p_son = (struct son_node*)kmalloc(sizeof(struct son_node)); p_son->p_son = p_child; // head insert into parent's son list p_son->pre = NULL; p_son->nxt = p_fa->fork_tree.sons; if (p_fa->fork_tree.sons != NULL) { p_son->nxt->pre = p_son; } p_fa->fork_tree.sons = p_son; // 最后你需要将子进程的状态置为READY,说明fork已经好了,子进程准备就绪了 p_child->statu = READY; xchg(&p_child->lock, 0); xchg(&p_fa->lock, 0); // 在你写完fork代码时先别急着运行跑,先要对自己来个灵魂拷问 // 1. 上锁上了吗?所有临界情况都考虑到了吗?(永远要相信有各种奇奇怪怪的并发问题) // 2. 所有错误情况都判断到了吗?错误情况怎么处理?(RTFM->`man 2 fork`) // 3. 你写的代码真的符合fork语义吗? // panic("Unimplement! soul torture"); // ? return to parent proc by the normal syscall return machanism return p_child->pid; } ssize_t do_fork(void) { return kern_fork(&p_proc_ready->pcb); }