213 lines
8.6 KiB
C
213 lines
8.6 KiB
C
#include <assert.h>
|
||
#include <x86.h>
|
||
#include <errno.h>
|
||
#include <string.h>
|
||
|
||
#include <kern/fork.h>
|
||
#include <kern/syscall.h>
|
||
#include <kern/trap.h>
|
||
#include <kern/pmap.h>
|
||
#include <kern/kmalloc.h>
|
||
#include <kern/sche.h>
|
||
#include <kern/stdio.h>
|
||
|
||
// get the flag of a lin addr in page table
|
||
static inline u32 get_flag(uintptr_t laddr, u32 cr3) {
|
||
assert(PGOFF(laddr) == 0);
|
||
uintptr_t *pde_ptr = (uintptr_t *)K_PHY2LIN(cr3);
|
||
assert((pde_ptr[PDX(laddr)] & PTE_P) != 0);
|
||
phyaddr_t pte_phy = PTE_ADDR(pde_ptr[PDX(laddr)]);
|
||
uintptr_t *pte_ptr = (uintptr_t *)K_PHY2LIN(pte_phy);
|
||
assert((pte_ptr[PTX(laddr)] & PTE_P) != 0);
|
||
return PTE_FLAG(pte_ptr[PTX(laddr)]);
|
||
}
|
||
|
||
static phyaddr_t
|
||
alloc_phy_page(struct page_node **page_list)
|
||
{
|
||
phyaddr_t paddr = phy_malloc_4k();
|
||
|
||
struct page_node *new_node = kmalloc(sizeof(struct page_node));
|
||
new_node->nxt = *page_list;
|
||
new_node->paddr = paddr;
|
||
new_node->laddr = -1;
|
||
*page_list = new_node;
|
||
|
||
return paddr;
|
||
}
|
||
|
||
static phyaddr_t
|
||
lin_mapping_phy(u32 cr3,
|
||
struct page_node **page_list,
|
||
uintptr_t laddr,
|
||
u32 pte_flag)
|
||
{
|
||
assert(PGOFF(laddr) == 0);
|
||
|
||
uintptr_t *pde_ptr = (uintptr_t *)K_PHY2LIN(cr3);
|
||
|
||
if ((pde_ptr[PDX(laddr)] & PTE_P) == 0) {
|
||
phyaddr_t pte_phy = alloc_phy_page(page_list);
|
||
memset((void *)K_PHY2LIN(pte_phy), 0, PGSIZE);
|
||
pde_ptr[PDX(laddr)] = pte_phy | PTE_P | PTE_W | PTE_U;
|
||
}
|
||
|
||
phyaddr_t pte_phy = PTE_ADDR(pde_ptr[PDX(laddr)]);
|
||
uintptr_t *pte_ptr = (uintptr_t *)K_PHY2LIN(pte_phy);
|
||
|
||
phyaddr_t page_phy;
|
||
if ((pte_ptr[PTX(laddr)] & PTE_P) != 0)
|
||
warn("fork alloc: this page was mapped before, laddr: %x", laddr);
|
||
page_phy = alloc_phy_page(page_list);
|
||
(*page_list)->laddr = laddr;
|
||
pte_ptr[PTX(laddr)] = page_phy | pte_flag;
|
||
return page_phy;
|
||
}
|
||
|
||
// modified from pmap.c::map_elf
|
||
// first alloc a new page list, together with a new cr3(with page directory page)
|
||
// second map kern
|
||
// third iterate over parent pages,
|
||
// for each parent page(except page table pages, child has its own) , map a page in child proc
|
||
// then copy content of this page to child
|
||
// finally, set child->page_list to this brand new one and set cr3
|
||
// SET: child's page list and cr3
|
||
static inline void copy_parent_pages(PROCESS_0 *child, PROCESS_0 *parent){
|
||
phyaddr_t new_cr3 = phy_malloc_4k();
|
||
memset((void *)K_PHY2LIN(new_cr3), 0, PGSIZE);
|
||
struct page_node *new_page_list = kmalloc(sizeof(struct page_node));
|
||
new_page_list->nxt = NULL;
|
||
new_page_list->paddr = new_cr3;
|
||
new_page_list->laddr = -1;
|
||
// maybe redundant, let it be for now
|
||
map_kern(new_cr3, &new_page_list);
|
||
// iterate over parent pages
|
||
for (struct page_node* pa_page = parent->page_list; pa_page != NULL; pa_page = pa_page->nxt) {
|
||
// no need to take care of non-physical page, we have our own page table and cr3
|
||
if (pa_page->laddr == -1) continue;
|
||
// first alloc a new page for the same laddr, and set flag same as parent
|
||
phyaddr_t new_paddr = lin_mapping_phy(new_cr3, &new_page_list, pa_page->laddr, get_flag(pa_page->laddr, parent->cr3));
|
||
// copy parent page to child page using paddr
|
||
memcpy((void*)K_PHY2LIN(new_paddr), (const void*)K_PHY2LIN(pa_page->paddr), PGSIZE);
|
||
// kprintf("%x -> %x\n", K_PHY2LIN(pa_page->paddr), K_PHY2LIN(new_paddr));
|
||
}
|
||
child->page_list = new_page_list;
|
||
child->cr3 = new_cr3;
|
||
}
|
||
|
||
ssize_t
|
||
kern_fork(PROCESS_0 *p_fa)
|
||
{
|
||
// 这可能是你第一次实现一个比较完整的功能,你可能会比较畏惧
|
||
// 但是放心,别怕,先别想自己要实现一个这么大的东西而毫无思路
|
||
// 这样你在焦虑的同时也在浪费时间,就跟你在实验五中被页表折磨一样
|
||
// 人在触碰到未知的时候总是害怕的,这是天性,所以请你先冷静下来
|
||
// fork系统调用会一步步引导你写出来,不会让你本科造火箭的
|
||
// panic("Unimplement! CALM DOWN!");
|
||
|
||
// 推荐是边写边想,而不是想一车然后写,这样非常容易计划赶不上变化
|
||
//? before all, lock father
|
||
while (xchg(&p_fa->lock, 1) == 1)
|
||
schedule();
|
||
// fork的第一步你需要找一个空闲(IDLE)的进程作为你要fork的子进程
|
||
PROCESS *proc_child = NULL;
|
||
int i = 0;
|
||
//? maybe cli will be better when preserving a proc resource
|
||
DISABLE_INT();
|
||
for (i = 1; i < PCB_SIZE; ++ i) {
|
||
if (proc_table[i].pcb.statu == IDLE) {
|
||
proc_table[i].pcb.statu = INITING;
|
||
proc_child = &proc_table[i];
|
||
break;
|
||
}
|
||
}
|
||
ENABLE_INT();
|
||
if (proc_child == NULL) {
|
||
// NO hell. no free proc_table found.
|
||
xchg(&p_fa->lock, 0);
|
||
return -EAGAIN;
|
||
}
|
||
PROCESS_0 *p_child = &proc_child->pcb;
|
||
// 再之后你需要做的是好好阅读一下pcb的数据结构,搞明白结构体中每个成员的语义
|
||
// 别光扫一遍,要搞明白这个成员到底在哪里被用到了,具体是怎么用的
|
||
// 可能exec和exit系统调用的代码能够帮助你对pcb的理解,不先理解好pcb你fork是无从下手的
|
||
// panic("Unimplement! read pcb");
|
||
|
||
// 在阅读完pcb之后终于可以开始fork工作了
|
||
// 本质上相当于将父进程的pcb内容复制到子进程pcb中
|
||
// 但是你需要想清楚,哪些应该复制到子进程,哪些不应该复制,哪些应该子进程自己初始化
|
||
// 其中有三个难点
|
||
// 1. 子进程"fork"的返回值怎么处理?(需要你对系统调用整个过程都掌握比较清楚,如果非常清晰这个问题不会很大)
|
||
// 2. 子进程内存如何复制?(别傻乎乎地复制父进程的cr3,本质上相当于与父进程共享同一块内存,
|
||
// 而共享内存肯定不符合fork的语义,这样一个进程写内存某块地方会影响到另一个进程,这个东西需要你自己思考如何复制父进程的内存)
|
||
// 3. 在fork结束后,肯定会调度到子进程,那么你怎么保证子进程能够正常进入用户态?
|
||
// (你肯定会觉得这个问题问的莫名其妙的,只能说你如果遇到那一块问题了就会体会到这个问题的重要性,
|
||
// 这需要你对调度整个过程都掌握比较清楚)
|
||
//? Start to COPY
|
||
//? 1. COPY PCB
|
||
// p_fa shares the same base addr as its padding
|
||
// anyways, copy the whole proc_table item(8K?)
|
||
DISABLE_INT(); // make sure this process is never interrupted
|
||
memset(proc_child, 0, sizeof(PROCESS)); // clear child's kernel stack
|
||
// the commented fields below will be set later
|
||
// p_child->cr3
|
||
p_child->exit_code = p_fa->exit_code;
|
||
// p_child->fork_tree
|
||
// p_child->kern_regs
|
||
p_child->lock = 0;
|
||
// p_child->page_list
|
||
p_child->pid = i;
|
||
p_child->priority = p_fa->priority;
|
||
p_child->statu = INITING; //! important!!! if you copied this from parent, haha, waste one hour
|
||
p_child->ticks = p_fa->ticks;
|
||
p_child->user_regs = p_fa->user_regs;
|
||
//? 2. ALLOC PAGES AND COPY PHYSICAL MEMORY
|
||
copy_parent_pages(p_child, p_fa);
|
||
// panic("Unimplement! soul torture1");
|
||
ENABLE_INT();
|
||
//? 3. SET restart point
|
||
// //! maybe, kern stack different, use offset relevant to stack base addr to set child's kern esp
|
||
// u32 esp_off = p_fa->kern_regs.esp - (u32)p_fa;
|
||
// p_child->kern_regs.esp = (u32)p_child + esp_off;
|
||
// u32 ebp_off = p_fa->kern_regs.ebp - (u32)p_fa;
|
||
// p_child->kern_regs.ebp = (u32)p_child + ebp_off;
|
||
// kprintf("%x %x\n", p_child->kern_regs.esp, p_fa->kern_regs.esp);
|
||
// kprintf("%x %x\n", p_child->user_regs.kernel_esp, p_fa->user_regs.kernel_esp);
|
||
//! kern_ctx is not part of our FSM model of user process, never copy it from parent
|
||
//! or 1 another hour will be wasted
|
||
// just set it as a new process from scratch, directly jump to restart
|
||
p_child->kern_regs.esp = (u32)(proc_child + 1) - 8;
|
||
*(u32 *)(p_child->kern_regs.esp + 0) = (u32)restart;
|
||
*(u32 *)(p_child->kern_regs.esp + 4) = (u32)p_child;
|
||
p_child->user_regs.eax = 0; // eax as the retval
|
||
|
||
// 别忘了维护进程树,将这对父子进程关系添加进去
|
||
// ? maintain process tree
|
||
p_child->fork_tree.p_fa = p_fa;
|
||
// malloc a son_node
|
||
struct son_node* p_son = (struct son_node*)kmalloc(sizeof(struct son_node));
|
||
p_son->p_son = p_child;
|
||
// head insert into parent's son list
|
||
p_son->pre = NULL;
|
||
p_son->nxt = p_fa->fork_tree.sons;
|
||
if (p_fa->fork_tree.sons != NULL) {
|
||
p_son->nxt->pre = p_son;
|
||
}
|
||
p_fa->fork_tree.sons = p_son;
|
||
// 最后你需要将子进程的状态置为READY,说明fork已经好了,子进程准备就绪了
|
||
p_child->statu = READY;
|
||
xchg(&p_fa->lock, 0);
|
||
// 在你写完fork代码时先别急着运行跑,先要对自己来个灵魂拷问
|
||
// 1. 上锁上了吗?所有临界情况都考虑到了吗?(永远要相信有各种奇奇怪怪的并发问题)
|
||
// 2. 所有错误情况都判断到了吗?错误情况怎么处理?(RTFM->`man 2 fork`)
|
||
// 3. 你写的代码真的符合fork语义吗?
|
||
// panic("Unimplement! soul torture");
|
||
// ? return to parent proc by the normal syscall return machanism
|
||
return p_child->pid;
|
||
}
|
||
|
||
ssize_t
|
||
do_fork(void)
|
||
{
|
||
return kern_fork(&p_proc_ready->pcb);
|
||
} |