inheritance check for redefined features

This commit is contained in:
ridethepig 2023-03-25 16:53:06 +08:00
parent 1da8dbb8c5
commit 1e072b28fc
4 changed files with 261 additions and 50 deletions

View File

@ -34,15 +34,59 @@ class Err3 inherits String {};
class Err3 inherits Bool {}; class Err3 inherits Bool {};
class Err4 inherits Err3 {};*) class Err4 inherits Err3 {};*)
class Err4 inherits Ok1 { class Err4 inherits Ok1 {
bye: SS <- 10; bye: Bool <- 10;
hello(a: TT) : NOEXIST { new Object }; hello(a: TT) : NOEXIST { new Object };
}; };
(* the following case tests redefined attributes and methods *)
(*
class Err6Base {
dup_obj: Int <- 10;
dup_method1(haha: Int): Int { 10 };
dup_method2(): Int { 10 };
dup_method3(): Int { 10 };
dup_method4(a:NOEXIST, b: Bool, c: NOEXIST): Int { a };
};
class Err6Sub inherits Err6Base {
dup_obj: Bool <- 20;
dup_obj: Bool <- 20;
dup_method1(fufu: Int): Int { 20 };
dup_method2(a:Int): Bool { false };
dup_method3(a:Int): Int { a };
dup_method4(a:NOEXIST, b: String, c: Bool): Int { a };
};
*)
class Main inherits IO {
class DummyMain {
la: Bool <- 20;
ala: Bool;
main(): Object {
{ new DummyMain; }
};
};
class Main inherits DummyMain {
attr1: Bool <- (new Err5).hello();
attr2: Int <- (new Err5).bye();
main(): Object { main(): Object {
{ {
(new Err4).hell(); let x:Int in {
x1 <- x + 1;
};
(new Err4).hello(true);
(new Err4).hello();
} }
}; };
main: Bool <- true;
};
class Err5 {
ala: Bool <- 20;
-- hello() : Object {{ala <- ala + 1;}};
hello: Int <- 20;
hello(): NOEXIST { new Object };
bye(): Bool { 10 };
-- ala: Int <- 20;
}; };

View File

@ -247,6 +247,9 @@ public:
Formal copy_Formal(); Formal copy_Formal();
void dump(ostream& stream, int n); void dump(ostream& stream, int n);
Symbol get_name() const { return name; };
Symbol get_type_decl() const { return type_decl; };
#ifdef Formal_SHARED_EXTRAS #ifdef Formal_SHARED_EXTRAS
Formal_SHARED_EXTRAS Formal_SHARED_EXTRAS
#endif #endif

View File

@ -1,11 +1,13 @@
#include <cassert> #include <cassert>
#include <iostream>
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <stdarg.h> #include <stdarg.h>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <queue>
#include "cool-tree.h" #include "cool-tree.h"
#include "semant.h" #include "semant.h"
#include "utilities.h" #include "utilities.h"
@ -94,7 +96,6 @@ static void initialize_constants(void)
ClassTable::ClassTable(Classes classes) : semant_errors(0) , error_stream(cerr) { ClassTable::ClassTable(Classes classes) : semant_errors(0) , error_stream(cerr) {
install_basic_classes(); install_basic_classes();
/* first scan: de-duplicate class definitions*/ /* first scan: de-duplicate class definitions*/
std::vector<class__class* > class_vec;
for (auto i = classes->first(); classes->more(i); i = classes->next(i)) { for (auto i = classes->first(); classes->more(i); i = classes->next(i)) {
auto class_i = static_cast<class__class*>(classes->nth(i)); auto class_i = static_cast<class__class*>(classes->nth(i));
if (name_to_node.find(class_i->get_name()) != name_to_node.end()) { if (name_to_node.find(class_i->get_name()) != name_to_node.end()) {
@ -104,7 +105,7 @@ ClassTable::ClassTable(Classes classes) : semant_errors(0) , error_stream(cerr)
// null means we have this class, but not yet build inheritence graph for it // null means we have this class, but not yet build inheritence graph for it
name_to_node[class_i->get_name()] = new ClassGraphNode(class_i, nullptr); name_to_node[class_i->get_name()] = new ClassGraphNode(class_i, nullptr);
// discard redefined classes by constructing a new vector of classes // discard redefined classes by constructing a new vector of classes
class_vec.push_back(class_i); _class_vec.push_back(class_i);
} }
} }
@ -113,7 +114,7 @@ ClassTable::ClassTable(Classes classes) : semant_errors(0) , error_stream(cerr)
auto sym_Int = idtable.lookup_string("Int"); auto sym_Int = idtable.lookup_string("Int");
auto sym_String = idtable.lookup_string("String"); auto sym_String = idtable.lookup_string("String");
for (auto class_i : class_vec) { for (auto class_i : _class_vec) {
auto sym_parent = class_i->get_parent(); auto sym_parent = class_i->get_parent();
// Cool has restrictions on inheriting from the basic classes // Cool has restrictions on inheriting from the basic classes
if ( sym_parent == sym_Bool || sym_parent == sym_Int || sym_parent == sym_String) { if ( sym_parent == sym_Bool || sym_parent == sym_Int || sym_parent == sym_String) {
@ -139,9 +140,9 @@ ClassTable::ClassTable(Classes classes) : semant_errors(0) , error_stream(cerr)
// Thus, we can start from object and mark all reachable nodes, error report those unreachable nodes // Thus, we can start from object and mark all reachable nodes, error report those unreachable nodes
/* third scan: check cyclic inheritance */ /* third scan: check cyclic inheritance */
class_root->traverse(); class_root->traverse_reachable();
for (auto i : name_to_node) { for (auto i : name_to_node) {
if (!i.second->reachable()) { if (!i.second->reachable) {
semant_error(i.second->get_class()) << "Class `" << i.first semant_error(i.second->get_class()) << "Class `" << i.first
<< "` or its ancestor, is involved in an inheritance cycle.\n"; << "` or its ancestor, is involved in an inheritance cycle.\n";
} }
@ -149,40 +150,175 @@ ClassTable::ClassTable(Classes classes) : semant_errors(0) , error_stream(cerr)
if (semant_errors) return; if (semant_errors) return;
if (semant_debug) { if (semant_debug) {
std::cerr<< "Class Inheritance Analysis done.\n"; std::cerr<< "Class Inheritance Analysis done.\n";
class_root->traverse(std::cout, 0); class_root->traverse_dump_name(std::cout, 0);
} }
}
void ClassTable::symtab_dump(Symbol class_name) {
std::cerr << "SymTab of " << class_name << "\n";
std::cerr << "M(" << class_name << ") =";
symtab_met[class_name]->dump();
std::cerr << "O(" << class_name << ") =";
symtab_obj[class_name]->dump();
std::cerr << "--------\n\n";
}
Symbol ClassTable::symtab_object_lookup_parent(Symbol class_name, Symbol object_name) {
assert(name_to_node.find(class_name) != name_to_node.end());
auto class_node = name_to_node[class_name];
auto parent_node= class_node->parent;
while (parent_node) {
auto result = symtab_obj[parent_node->get_class()->get_name()]->probe(object_name);
// only need to lookup in the top scope, because attributes all reside in top scope
if (result) return result;
parent_node = parent_node->parent;
}
return nullptr;
}
method_class* ClassTable::symtab_method_lookup_parent(Symbol class_name, Symbol method_name) {
assert(name_to_node.find(class_name) != name_to_node.end());
auto class_node = name_to_node[class_name];
auto parent_node= class_node->parent;
while (parent_node) {
auto result = symtab_met[parent_node->get_class()->get_name()]->probe(method_name);
// only need to lookup in the top scope, because attributes all reside in top scope
if (result) return result;
parent_node = parent_node->parent;
}
return nullptr;
}
void ClassTable::install_all_features() {
/* fourth scan: gather attr and method definition */ /* fourth scan: gather attr and method definition */
for (auto class_i : class_vec) { auto sym_Main = idtable.lookup_string("Main");
auto features_i = class_i->get_features(); auto sym_main = idtable.lookup_string("main");
auto name_i = class_i->get_name(); class__class* class_Main = nullptr;
symtab_met[name_i] = new SymbolTable<Symbol, method_class>; method_class* method_main = nullptr; // main in class Main
symtab_obj[name_i] = new SymbolTable<Symbol, Entry>; std::queue<ClassGraphNode*> _iter_queue;
symtab_met[name_i]->enterscope(); _iter_queue.push(class_root);
symtab_obj[name_i]->enterscope(); while (!_iter_queue.empty()) {
for (auto j = features_i->first(); features_i->more(j); j = features_i->next(j)) { auto cur_node = _iter_queue.front();
auto feature_j = features_i->nth(j); _iter_queue.pop();
if (typeid(*feature_j) == typeid(attr_class)) { // std::cerr << "Pop " << cur_node->get_class()->get_name() << "\n";
auto attr_j = static_cast<attr_class*>(feature_j);
symtab_obj[name_i]->addid(attr_j->get_name(), attr_j->get_type_decl()); for (auto child : cur_node->children) {
_iter_queue.push(child);
// std::cerr << "Push " << child->get_class()->get_name() << "\n";
}
auto cur_class = cur_node->get_class();
auto cur_name = cur_class->get_name();
if (cur_name == sym_Main) {
class_Main = cur_class;
}
symtab_met[cur_name] = new SymbolTable<Symbol, method_class>;
symtab_obj[cur_name] = new SymbolTable<Symbol, Entry>;
symtab_met[cur_name]->enterscope();
symtab_obj[cur_name]->enterscope();
auto cur_features = cur_class->get_features();
for (auto j = cur_features->first(); cur_features->more(j); j = cur_features->next(j)) {
auto cur_feature = cur_features->nth(j);
// std::cerr << "feature " << j << " ";
if (typeid(*cur_feature) == typeid(attr_class)) {
auto cur_attr = static_cast<attr_class*>(cur_feature);
// std::cerr << "attr " << cur_attr->get_name() << "\n";
if (symtab_obj[cur_name]->lookup(cur_attr->get_name()) != nullptr) {
semant_error(cur_class->get_filename(), cur_attr) << "Attribute " << cur_attr->get_name()
<< " is multiply defined.\n";
}
else if (symtab_object_lookup_parent(cur_name, cur_attr->get_name()) != nullptr) {
// check duplicate name for attributes
semant_error(cur_class->get_filename(), cur_attr) << "Attribute " << cur_attr->get_name()
<< " is an attribute of an inherited class.\n";
}
else {
symtab_obj[cur_name]->addid(cur_attr->get_name(), cur_attr->get_type_decl());
}
} }
else if (typeid(*feature_j) == typeid(method_class)) { else if (typeid(*cur_feature) == typeid(method_class)) {
auto method_j = static_cast<method_class*>(feature_j); auto cur_method = static_cast<method_class*>(cur_feature);
symtab_met[name_i]->addid(method_j->get_name(), method_j); // std::cerr << "method " << cur_method->get_name() << "\n";
if (symtab_met[cur_name]->lookup(cur_method->get_name()) != nullptr) {
semant_error(cur_class->get_filename(), cur_method) << "Method " << cur_method->get_name()
<< " is multiply defined.\n";
}
else {
auto overridden_method = symtab_method_lookup_parent(cur_name, cur_method->get_name());
auto _error_flag = false;
if (overridden_method != nullptr) {
// additional check is necessary for overridden methods
if (semant_debug) std::cerr << "Overriden method" << cur_method->get_name() << "\n";
if (cur_method->get_return_type() != overridden_method->get_return_type()) {
// direct comaprison between Symbols is okay, 'cause Symbols(ptr to Entry) are distinct
// when talking about classes or types
semant_error(cur_class->get_filename(), cur_method)
<< "In redefined method " << cur_method->get_name()
<< ", return type " << cur_method->get_return_type()
<< " is different from original return type" << overridden_method->get_return_type()
<< "\n";
_error_flag = true;
}
else if (cur_method->get_formals()->len() != overridden_method->get_formals()->len()) {
semant_error(cur_class->get_filename(), cur_method)
<< "Incompatible number of formal parameters in redefined method "
<< cur_method->get_name()
<< ".\n";
_error_flag = true;
}
else {
// we cannot directly compare 2 formal lists
auto cur_formals = cur_method->get_formals();
auto overridden_formals = overridden_method->get_formals();
auto cur_formal_i = cur_formals->first();
auto overridden_formal_i = overridden_formals->first();
// by last check, we get ensured that their formal list should have the same length
while (cur_formals->more(cur_formal_i)) {
auto cur_formal = static_cast<formal_class*>(cur_formals->nth(cur_formal_i));
auto overridden_formal = static_cast<formal_class*>(overridden_formals->nth(cur_formal_i));
if (cur_formal->get_type_decl() != overridden_formal->get_type_decl()) {
semant_error(cur_class->get_filename(), cur_method)
<< "In redefined method " << cur_method->get_name()
<< ", parameter type " << cur_formal->get_type_decl()
<< " is different from original type" << overridden_formal->get_type_decl()
<< "\n";
_error_flag = true;
break;
}
cur_formal_i = cur_formals->next(cur_formal_i);
overridden_formal_i = overridden_formals->next(overridden_formal_i);
}
}
}
if (!_error_flag) {
// std::cerr << "method done " << cur_method->get_name() << "\n";
symtab_met[cur_name]->addid(cur_method->get_name(), cur_method);
if (class_Main != nullptr && cur_name == sym_Main && cur_method->get_name() == sym_main) {
// main in class Main
method_main = cur_method;
}
}
}
} }
else assert(0); else assert(0);
} }
} if (semant_debug) {
if (semant_debug) { symtab_dump(cur_name);
std::cerr << "Attr & Methods Collection done.\n";
for (auto class_i : class_vec) {
auto name_i = class_i->get_name();
std::cerr << "M(" << name_i << ") =";
symtab_met[name_i]->dump();
std::cerr << "O(" << name_i << ") =";
symtab_obj[name_i]->dump();
std::cerr << "--------\n\n";
} }
} }
if (!class_Main) {
semant_error() << "Class Main is not defined.\n";
return;
}
else if (!method_main) {
semant_error(class_Main) << "No 'main' method in class Main.\n";
return;
}
else
if (semant_debug) {
std::cerr << "Attrs & Methods Collection done.\n";
}
} }
void ClassTable::install_basic_classes() { void ClassTable::install_basic_classes() {
@ -299,7 +435,7 @@ void ClassTable::install_basic_classes() {
if (semant_debug) { if (semant_debug) {
std::cout << "Basic classed installed\n"; std::cout << "Basic classed installed\n";
class_root->traverse(std::cout, 0); class_root->traverse_dump_name(std::cout, 0);
} }
} }
@ -362,11 +498,12 @@ void program_class::semant()
cerr << "Compilation halted due to static semantic errors." << endl; cerr << "Compilation halted due to static semantic errors." << endl;
exit(1); exit(1);
} }
for (auto i = classes->first(); classes->more(i); i = classes->next(i)) { /* Gather declared types of features for later use */
auto class_i = static_cast<class__class*>(classes->nth(i)); classtable->install_all_features();
/* Top down type checking */
for (auto class_i : classtable->class_vec()) {
class_i->semant(); class_i->semant();
} }
/* some semantic analysis code may go here */
if (classtable->errors()) { if (classtable->errors()) {
cerr << "Compilation halted due to static semantic errors." << endl; cerr << "Compilation halted due to static semantic errors." << endl;

View File

@ -2,6 +2,7 @@
#define SEMANT_H_ #define SEMANT_H_
#include <assert.h> #include <assert.h>
#include <cstddef>
#include <iostream> #include <iostream>
#include <ostream> #include <ostream>
#include <vector> #include <vector>
@ -24,14 +25,14 @@ typedef ClassTable *ClassTableP;
// methods. // methods.
class ClassGraphNode { class ClassGraphNode {
private: public:
// tree-shape relation maintainer // tree-shape relation maintainer
ClassGraphNode* parent; ClassGraphNode* parent;
std::vector<ClassGraphNode*> children; std::vector<ClassGraphNode*> children;
// the `class__class` object for which it builds graph // the `class__class` object for which it builds graph
Class_ self; Class_ self;
// for cycle detection // for cycle detection
int mark = 0; int reachable = 0;
public: public:
// Note that, Class_ = Class__class*, itself is a ptr type, so just use it // Note that, Class_ = Class__class*, itself is a ptr type, so just use it
@ -82,30 +83,47 @@ public:
/* /*
* traverse and print class name * traverse and print class name
*/ */
void traverse(std::ostream& stream, int n) const { void traverse_dump_name(std::ostream& stream, int n) const {
dump_Symbol(stream, n, dynamic_cast<class__class*>(self)->get_name()); dump_Symbol(stream, n, dynamic_cast<class__class*>(self)->get_name());
for (auto child: children) { for (auto child: children) {
child->traverse(stream, n + 2); child->traverse_dump_name(stream, n + 2);
} }
} }
/* /*
* traverse and mark all reachable children * traverse and mark all reachable children
*/ */
void traverse() { void traverse_reachable() {
mark = 1; reachable = 1;
for (auto child : children) { for (auto child : children) {
child->traverse(); child->traverse_reachable();
} }
} }
bool reachable() { class__class* get_class() {
return !(mark == 0); return static_cast<class__class*>(self);
} }
Class_ get_class() { // static void traverse_iter(ClassGraphNode* root) {
return self; // auto cur_node = root;
} // std::vector<size_t> stk;
// stk.push_back(0);
// std::cout << pad((stk.size()-1) * 4) << cur_node->get_class()->get_name() << "\n";
// while (!stk.empty()) {
// if (cur_node->children.size() == stk.back()) {
// // we have finished all the children
// stk.pop_back();
// cur_node = cur_node->parent;
// continue;
// }
// auto next_idx = stk.back();
// stk.pop_back();
// stk.push_back(next_idx + 1);
// cur_node = cur_node->children[next_idx];
// std::cout << pad((stk.size()) * 2) << cur_node->get_class()->get_name() << "\n";
// stk.push_back(0);
// }
// }
}; };
@ -115,6 +133,7 @@ class ClassTable {
private: private:
int semant_errors; int semant_errors;
void install_basic_classes(); void install_basic_classes();
void recursive_all_features();
ostream& error_stream; ostream& error_stream;
// Root of the Inheritance Graph (hopefully it is a tree if the program is correct) // Root of the Inheritance Graph (hopefully it is a tree if the program is correct)
@ -129,8 +148,16 @@ private:
std::map<Symbol, SymbolTable<Symbol, Entry>* > symtab_obj; std::map<Symbol, SymbolTable<Symbol, Entry>* > symtab_obj;
std::map<Symbol, SymbolTable<Symbol, method_class>*> symtab_met; std::map<Symbol, SymbolTable<Symbol, method_class>*> symtab_met;
// Actually, it makes things easier to keep a list-shape copy of classes
std::vector<class__class*> _class_vec;
public: public:
ClassTable(Classes); ClassTable(Classes);
void install_all_features();
void symtab_dump(Symbol);
Symbol symtab_object_lookup_parent(Symbol, Symbol);
method_class* symtab_method_lookup_parent(Symbol, Symbol);
std::vector<class__class*>& class_vec() { return _class_vec; }
int errors() { return semant_errors; } int errors() { return semant_errors; }
ostream& semant_error(); ostream& semant_error();
ostream& semant_error(Class_ c); ostream& semant_error(Class_ c);