(* The Game of Life Tendo Kayiira, Summer '95 With code taken from /private/cool/class/examples/cells.cl This introduction was taken off the internet. It gives a brief description of the Game Of Life. It also gives the rules by which this particular game follows. Introduction John Conway's Game of Life is a mathematical amusement, but it is also much more: an insight into how a system of simple cellualar automata can create complex, odd, and often aesthetically pleasing patterns. It is played on a cartesian grid of cells which are either 'on' or 'off' The game gets it's name from the similarity between the behaviour of these cells and the behaviour of living organisms. The Rules The playfield is a cartesian grid of arbitrary size. Each cell in this grid can be in an 'on' state or an 'off' state. On each 'turn' (called a generation,) the state of each cell changes simultaneously depending on it's state and the state of all cells adjacent to it. For 'on' cells, If the cell has 0 or 1 neighbours which are 'on', the cell turns 'off'. ('dies of loneliness') If the cell has 2 or 3 neighbours which are 'on', the cell stays 'on'. (nothing happens to that cell) If the cell has 4, 5, 6, 7, 8, or 9 neighbours which are 'on', the cell turns 'off'. ('dies of overcrowding') For 'off' cells, If the cell has 0, 1, 2, 4, 5, 6, 7, 8, or 9 neighbours which are 'on', the cell stays 'off'. (nothing happens to that cell) If the cell has 3 neighbours which are 'on', the cell turns 'on'. (3 neighbouring 'alive' cells 'give birth' to a fourth.) Repeat for as many generations as desired. *) class Board inherits IO { rows : Int; columns : Int; board_size : Int; size_of_board(initial : String) : Int { initial.length() }; board_init(start : String) : SELF_TYPE { (let size :Int <- size_of_board(start) in { if size = 15 then { rows <- 3; columns <- 5; board_size <- size; } else if size = 16 then { rows <- 4; columns <- 4; board_size <- size; } else if size = 20 then { rows <- 4; columns <- 5; board_size <- size; } else if size = 21 then { rows <- 3; columns <- 7; board_size <- size; } else if size = 25 then { rows <- 5; columns <- 5; board_size <- size; } else if size = 28 then { rows <- 7; columns <- 4; board_size <- size; } else -- If none of the above fit, then just give { -- the configuration of the most common board rows <- 5; columns <- 5; board_size <- size; } fi fi fi fi fi fi; self; } ) }; }; class CellularAutomaton inherits Board { population_map : String; init(map : String) : SELF_TYPE { { population_map <- map; board_init(map); self; } }; print() : SELF_TYPE { (let i : Int <- 0 in (let num : Int <- board_size in { out_string("\n"); while i < num loop { out_string(population_map.substr(i,columns)); out_string("\n"); i <- i + columns; } pool; out_string("\n"); self; } ) ) }; num_cells() : Int { population_map.length() }; cell(position : Int) : String { if board_size - 1 < position then " " else population_map.substr(position, 1) fi }; north(position : Int): String { if (position - columns) < 0 then " " else cell(position - columns) fi }; south(position : Int): String { if board_size < (position + columns) then " " else cell(position + columns) fi }; east(position : Int): String { if (((position + 1) /columns ) * columns) = (position + 1) then " " else cell(position + 1) fi }; west(position : Int): String { if position = 0 then " " else if ((position / columns) * columns) = position then " " else cell(position - 1) fi fi }; northwest(position : Int): String { if (position - columns) < 0 then " " else if ((position / columns) * columns) = position then " " else north(position - 1) fi fi }; northeast(position : Int): String { if (position - columns) < 0 then " " else if (((position + 1) /columns ) * columns) = (position + 1) then " " else north(position + 1) fi fi }; southeast(position : Int): String { if board_size < (position + columns) then " " else if (((position + 1) /columns ) * columns) = (position + 1) then " " else south(position + 1) fi fi }; southwest(position : Int): String { if board_size < (position + columns) then " " else if ((position / columns) * columns) = position then " " else south(position - 1) fi fi }; neighbors(position: Int): Int { { if north(position) = "X" then 1 else 0 fi + if south(position) = "X" then 1 else 0 fi + if east(position) = "X" then 1 else 0 fi + if west(position) = "X" then 1 else 0 fi + if northeast(position) = "X" then 1 else 0 fi + if northwest(position) = "X" then 1 else 0 fi + if southeast(position) = "X" then 1 else 0 fi + if southwest(position) = "X" then 1 else 0 fi; } }; (* A cell will live if 2 or 3 of it's neighbors are alive. It dies otherwise. A cell is born if only 3 of it's neighbors are alive. *) cell_at_next_evolution(position : Int) : String { if neighbors(position) = 3 then "X" else if neighbors(position) = 2 then if cell(position) = "X" then "X" else "-" fi else "-" fi fi }; evolve() : SELF_TYPE { (let position : Int <- 0 in (let num : Int <- num_cells() in (let temp : String in { while position < num loop { temp <- temp.concat(cell_at_next_evolution(position)); position <- position + 1; } pool; population_map <- temp; self; } ) ) ) }; (* This is where the background pattern is detremined by the user. More patterns can be added as long as whoever adds keeps the board either 3x5, 4x5, 5x5, 3x7, 7x4, 4x4 with the row first then column. *) option(): String { { (let num : Int in { out_string("\nPlease chose a number:\n"); out_string("\t1: A cross\n"); out_string("\t2: A slash from the upper left to lower right\n"); out_string("\t3: A slash from the upper right to lower left\n"); out_string("\t4: An X\n"); out_string("\t5: A greater than sign \n"); out_string("\t6: A less than sign\n"); out_string("\t7: Two greater than signs\n"); out_string("\t8: Two less than signs\n"); out_string("\t9: A 'V'\n"); out_string("\t10: An inverse 'V'\n"); out_string("\t11: Numbers 9 and 10 combined\n"); out_string("\t12: A full grid\n"); out_string("\t13: A 'T'\n"); out_string("\t14: A plus '+'\n"); out_string("\t15: A 'W'\n"); out_string("\t16: An 'M'\n"); out_string("\t17: An 'E'\n"); out_string("\t18: A '3'\n"); out_string("\t19: An 'O'\n"); out_string("\t20: An '8'\n"); out_string("\t21: An 'S'\n"); out_string("Your choice => "); num <- in_int(); out_string("\n"); if num = 1 then " XX XXXX XXXX XX " else if num = 2 then " X X X X X " else if num = 3 then "X X X X X" else if num = 4 then "X X X X X X X X X" else if num = 5 then "X X X X X " else if num = 6 then " X X X X X" else if num = 7 then "X X X XX X " else if num = 8 then " X XX X X X " else if num = 9 then "X X X X X " else if num = 10 then " X X X X X" else if num = 11 then "X X X X X X X X" else if num = 12 then "XXXXXXXXXXXXXXXXXXXXXXXXX" else if num = 13 then "XXXXX X X X X " else if num = 14 then " X X XXXXX X X " else if num = 15 then "X X X X X X X " else if num = 16 then " X X X X X X X" else if num = 17 then "XXXXX X XXXXX X XXXX" else if num = 18 then "XXX X X X X XXXX " else if num = 19 then " XX X XX X XX " else if num = 20 then " XX X XX X XX X XX X XX " else if num = 21 then " XXXX X XX X XXXX " else " " fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi; } ); } }; prompt() : Bool { { (let ans : String in { out_string("Would you like to continue with the next generation? \n"); out_string("Please use lowercase y or n for your answer [y]: "); ans <- in_string(); out_string("\n"); if ans = "n" then false else true fi; } ); } }; prompt2() : Bool { (let ans : String in { out_string("\n\n"); out_string("Would you like to choose a background pattern? \n"); out_string("Please use lowercase y or n for your answer [n]: "); ans <- in_string(); if ans = "y" then true else false fi; } ) }; }; class Main inherits CellularAutomaton { cells : CellularAutomaton; main() : SELF_TYPE { { (let continue : Bool in (let choice : String in { out_string("Welcome to the Game of Life.\n"); out_string("There are many initial states to choose from. \n"); while prompt2() loop { continue <- true; choice <- option(); cells <- (new CellularAutomaton).init(choice); cells.print(); while continue loop if prompt() then { cells.evolve(); cells.print(); } else continue <- false fi pool; } pool; self; } ) ); } }; };