CompilerSysY/include/llir_instruction.h
2023-05-24 20:40:45 +08:00

278 lines
8.1 KiB
C++

#pragma once
#include "common.h"
#include "llir_type.h"
#include "llir_value.h"
#include <cassert>
#include <sstream>
#include <string>
namespace CompSysY {
DEF_PTR_T(InstAlloca);
DEF_PTR_T(InstStore);
DEF_PTR_T(InstLoad);
DEF_PTR_T(InstBinary);
DEF_PTR_T(InstZext);
DEF_PTR_T(InstBranch);
DEF_PTR_T(InstReturn);
DEF_PTR_T(InstCall);
DEF_PTR_T(InstGEP);
DEF_PTR_T(InstPhi);
enum class InstTag {
Add,
Sub,
Mod,
Mul,
Div,
Lt,
Le,
Ge,
Gt,
Eq,
Ne,
And,
Or,
Br,
Call,
Ret,
Alloca,
Load,
Store,
GEP,
Zext,
Phi,
MemPhi,
LoadDep,
InsertEle,
ExtractEle
};
class Instruction : public User {
public:
int ir_seqno = -1;
InstTag tag;
BasicBlockPtr_t parent_bb;
// decltype(parent_bb->inst_list.begin()) inst_itr_in_parent;
Instruction(InstTag inst_tag, TypePtr_t type, BasicBlockPtr_t parent_bb)
: User("", type), tag(inst_tag), parent_bb(parent_bb) {}
std::string tag_string() {
switch (tag) {
case InstTag::Add: return "add";
case InstTag::Sub: return "sub";
case InstTag::Mod: return "srem";
case InstTag::Mul: return "mul";
case InstTag::Div: return "sdiv";
case InstTag::Lt: return "icmp slt";
case InstTag::Le: return "icmp sle";
case InstTag::Ge: return "icmp sge";
case InstTag::Gt: return "icmp sgt";
case InstTag::Eq: return "icmp eq";
case InstTag::Ne: return "icmp ne";
case InstTag::And: return "and";
case InstTag::Or: return "or";
case InstTag::Br: return "br";
case InstTag::Call: return "call";
case InstTag::Ret: return "ret";
case InstTag::Alloca: return "alloca";
case InstTag::Load: return "load";
case InstTag::Store: return "store";
case InstTag::GEP: return "GEP";
case InstTag::Zext: return "zext";
case InstTag::Phi: return "Phi";
case InstTag::MemPhi: return "MemPhi";
case InstTag::LoadDep: return "LoadDep";
case InstTag::InsertEle: return "InsertEle";
case InstTag::ExtractEle: return "ExtractEle";
}
}
virtual std::string to_string() override {
return type->to_string() + " " + tag_string();
};
};
class InstAlloca : public Instruction {
public:
InstAlloca(TypePtr_t alloc_type, std::shared_ptr<BasicBlock> parent_bb)
: Instruction(InstTag::Alloca, std::make_shared<PointerType>(alloc_type), parent_bb) {}
virtual std::string to_IR_string() override {
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
};
class InstStore : public Instruction {
public:
InstStore(std::shared_ptr<Value> value, std::shared_ptr<Value> pointer, std::shared_ptr<BasicBlock> parent_bb)
: Instruction(InstTag::Store, TypeHelper::TYPE_VOID, parent_bb) {
assert(value);
Add_Operand(value);
Add_Operand(pointer);
}
};
class InstLoad : public Instruction {
public:
InstLoad(std::shared_ptr<Value> value, TypePtr_t type, std::shared_ptr<BasicBlock> parent_bb)
: Instruction(InstTag::Load, type, parent_bb) {
Add_Operand(value);
}
virtual std::string to_IR_string() override {
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
};
class InstBinary : public Instruction {
public:
InstBinary(
InstTag inst_tag,
TypePtr_t val_type,
std::shared_ptr<Value> op1,
std::shared_ptr<Value> op2,
std::shared_ptr<BasicBlock> parent_bb
)
: Instruction(inst_tag, val_type, parent_bb) {
Add_Operand(op1);
Add_Operand(op2);
}
virtual std::string to_IR_string() override {
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
};
//<result> = zext <ty> <value> to <ty2>
// zext is integer type, i32
class InstZext : public Instruction {
public:
InstZext(std::shared_ptr<Value> op, std::shared_ptr<BasicBlock> parent_bb)
: Instruction(InstTag::Zext, TypeHelper::TYPE_I32, parent_bb) {
Add_Operand(op);
}
virtual std::string to_IR_string() override {
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
};
class InstBranch : public Instruction {
public:
// conditional branch
InstBranch(ValuePtr_t cond, BasicBlockPtr_t true_block, BasicBlockPtr_t false_block, BasicBlockPtr_t parent_bb)
: Instruction(InstTag::Br, TypeHelper::TYPE_VOID, parent_bb) {
this->Add_Operand(cond);
this->Add_Operand(true_block);
this->Add_Operand(false_block);
}
// unconditional branch
InstBranch(BasicBlockPtr_t target_block, BasicBlockPtr_t parent_bb)
: Instruction(InstTag::Br, TypeHelper::TYPE_VOID, parent_bb) {
this->Add_Operand(target_block);
}
};
class InstReturn : public Instruction {
public:
InstReturn(ValuePtr_t ret_val, BasicBlockPtr_t parent_bb)
: Instruction(InstTag::Ret, TypeHelper::TYPE_VOID, parent_bb) {
this->Add_Operand(ret_val);
}
InstReturn(BasicBlockPtr_t parent_bb) : Instruction(InstTag::Ret, TypeHelper::TYPE_VOID, parent_bb) {}
};
// call's type is the function's return type
class InstCall : public Instruction {
public:
InstCall(FunctionPtr_t func, const std::vector<ValuePtr_t> &args, BasicBlockPtr_t parent_bb)
: Instruction(InstTag::Call, func->get_type()->return_type, parent_bb) {
Add_Operand(func);
for (auto arg : args) {
Add_Operand(arg);
}
}
virtual std::string to_IR_string() override {
if (Type::isType<VoidType>(type)) {
panic("No ret val");
}
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
};
// getelementptr <ty>, ptr <ptrval>{, [inrange] <ty> <idx>}*
// Example: lea arr[2][3] from arr[5][4]:
// &arr[2][3] = GEP [5x[4xi32]], [5x[4xi32]]* arr, i32 0, i32 2, i32 3
// For simplicity, we want to limit the use of gep of at most 3 ops
// op0: pointer to array;
// if there is only one index, the return value has the same type as op0
// if there is 2 index, the return value has type of arr's element
class InstGEP : public Instruction {
public:
ValuePtr_t aim_to;
TypePtr_t element_type;
InstGEP(ValuePtr_t pointer, const std::vector<ValuePtr_t> &indices, BasicBlockPtr_t parent_bb)
: Instruction(InstTag::GEP, std::make_shared<PointerType>(extract_type(pointer, indices)), parent_bb) {
if (Value::is<InstGEP>(pointer)) {
aim_to = std::dynamic_pointer_cast<InstGEP>(pointer)->aim_to;
}
else if (Value::is<InstAlloca>(pointer) || Value::is<GlobalVar>(pointer)) {
aim_to = pointer;
}
else {
// LOG(WARNING) << "Unexpected pointer type " << pointer->to_string();
aim_to = nullptr;
}
assert(indices.size() <= 2);
element_type = extract_type(pointer, indices);
Add_Operand(pointer);
for (auto index : indices) {
Add_Operand(index);
}
}
virtual std::string to_IR_string() override {
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
// get the inner
static TypePtr_t extract_type(ValuePtr_t pointer, const std::vector<ValuePtr_t> &indices) {
auto pointed_type = shared_cast<PointerType>(pointer->type)->pointed_type;
if (Type::isType<IntegerType>(pointed_type)) {
return pointed_type;
}
else if (Type::isType<ArrayType>(pointed_type)) {
for (int i = 1; i < indices.size(); ++i) {
pointed_type = shared_cast<ArrayType>(pointed_type)->element_type;
}
return pointed_type;
}
LOG(ERROR) << "unexpected type: " << pointer->to_string();
assert(0);
}
};
class InstPhi : public Instruction {
public:
InstPhi(TypePtr_t type, const decltype(Function::bb_list) &incoming_vals, BasicBlockPtr_t parent_bb)
: Instruction(InstTag::Phi, type, parent_bb) {
operand_list.resize(incoming_vals.size(), nullptr);
}
void set_incoming_val(unsigned index, ValuePtr_t val) {
auto old_op = operand_list[index];
operand_list[index] = val;
if (val) val->use_list.push_back({val, this, index});
if (old_op) {
if (std::find(operand_list.begin(), operand_list.end(), old_op) == operand_list.end()) {
old_op->u_remove_use(this);
}
}
}
virtual std::string to_IR_string() override {
std::string str = type->to_IR_string() + " %" + std::to_string(ir_seqno);
return str;
}
};
} // namespace CompSysY